
Security	Issues	on
Intel	SGX

(offensive	and	defensive	techniques)

Taesoo	Kim

The	Team

2

Outline

• Threat	model	/	assumption
• Traditional	attack	vectors
• New	attack	vectors
• Summary

3

Outline

• Threat	model	/	assumption
• Traditional	attack	vectors
• Cache-based	side	channel
• Memory	safety
• Weak	mitigation	techniques	(e.g.,	ASLR)
• Uninitialized	padding	in	EDL

• New	attack	vectors
• Summary

4

Outline

• Threat	model	/	assumption
• Traditional	attack	vectors
• New	attack	vectors
• Page	table	attack
• Branch	shadowing	attack
• Rowhammer against	SGX

• Summary

5

Disclaimer

6

https://software.intel.com/en-us/sgx/academic-research

Revisited:	Intel	SGX	101
• “Practical”	TEE	implementation	by	Intel
• Extending	x86	Instruction	Set	Architecture	(ISA)
– Native	performance
– Compatible	to	x86
– Commodity	(i.e.,	cheap)

Supermicro ServerLenovo	T560 Dell	OptiPlex	5040

Revisited:	SGX	for	Cloud

8

Cloud	provider	(untrusted)

Revisited:	SGX	for	Cloud

9

Cloud	provider	(untrusted)

Revisited:	SGX	for	Cloud	(Isolation)

10

Cloud	provider	(untrusted)

Revisited:	SGX	for	Cloud	
(Remote	attestation)

11

Cloud	provider	(untrusted)

Client

EPID

by	developer

Revisited:	SGX	for	Cloud	
(Remote	attestation)

12

Cloud	provider	(untrusted)

Client

EPID

by	developer

SGX	Ecosystem	for	Attackers

13

:		Trusted	components	(i.e.,	where	we	should	attack)

:		Attacker’s	capabilities	(i.e.,	what	attackers	can	do)

Our	Initial	Interests	as	Attacker

14

Not	interesting	
(unknown,	not	popular)

Not	interesting	
(non	technical	issues)

Attacking	applications	running	on	enclaves
(i.e.,	breaking	their	isolation	and	confidentiality)
with	the	capabilities	of	the	cloud	provider

Summary:	Intel	SGX	101

• Two	important	design	goals:
• Performance	(i.e.,	native	speed,	multithread)
• General	purpose	(i.e.,	x86	ISA)

• Two	important	security	primitives:
• Isolated	execution	→	confidentiality,	integrity
• Remote	attestation	→	integrity

15

Intel	SGX	101:	Isolated	Execution

• Protect	enclaves	from	untrusted	privilege	software
• Small	attack	surface	(TCB:	App	+	CPU)

16

Address
Space

Enclave

Physical
Memory

EPC

Encrypted
code/data

CPU	Package

Memory Encryption
Engine (MEE)

Processor	Key

Enclave

Intel	SGX	101:	Isolated	Execution

• Protect	enclaves	from	untrusted	privilege	software
• Small	attack	surface	(TCB:	App	+	CPU)

17

Address
Space

Enclave

Physical
Memory

EPC

Encrypted
code/data

CPU	Package

Memory Encryption
Engine (MEE)

Processor	Key

Enclave
Snooping

Access	from	
OS/VMM

Access	b/w	
enclaves

SGX’s	Threat	Model	(very	strong!)

● All except	the	core	package	can	be	malicious
● Device,	firmware,	…
● Operating	systems,	hypervisor	…

● DoS (availability)	is	naturally	out	of	concern
● Intel	excludes	cache-based	side-channel	
(due	to	performance)

What	if	Enclave	is	Compromised?
• SGX	protects	attackers	from	auditing/analysis
• Leak	sensitive	information
• Permanently	parasite	to	the	enclave	program

19

Protected?
by	SGX

Enclave

No	access	
from	

OS/VMM

Leak	secret

Enclave

Rootkit

Enclave

MiTM

What	if	Enclave	is	Compromised?
• SGX	protects	attackers	from	auditing/analysis
• Leak	sensitive	information
• Permanently	parasite	to	the	enclave	program

20

Protected?
by	SGX

Enclave

No	access	
from	

OS/VMM

Leak	secret

Enclave

Rootkit

Enclave

MiTM

Due	to	its	strong	threat	model	and	consequences	of	
compromises,	developing	a	secure	enclave	program	is	

more	difficult	than	a	typical	program!

Potential	Post	Exploitation

• Dumping	confidential	data
• i.e.,	memcpy(non-enclave	region,	enclave,	size)

• Permanent	parasite	
• i.e.,	MiTM on	the	remote	attestation	

2121SEC’17

Traditional	Attack	Vectors

• Cache-based	side	channel
• Memory	safety
• Weak	mitigation	techniques	(e.g.,	ASLR)
• Uninitialized	padding	in	EDL

22

Cache-based	Side-channel	Attacks

23

arXiv’17

EuroSec’17

SEC’17

arXiv’17

Cache-based	Side-channel	Attacks

24

Cache	attacks	are	possible	and	often,	makes	it	easier	
to	launch		the	attack	due	to	its	strong	threat	model	

(e.g.,	using	PMC)
→	Numerious	defenses	(e.g.,	coloring	...)

Cache	Attack	is	Practical	Concern?

• It	depends	on	context/applications!
• Performance	(=	cache)	vs.	potential	risks
• SGX	makes	the	cache	attack:
• Easier:	by	allowing	privileged	features	(e.g.,	PMU)
• Harder:	by	leveraging	isolation	/	randomization
(security	by	obscurity	practical)

→	Intel	explictly noted	that	it’s	better	to	address	in	
SW (if	you	wish)	rather	than	HW	(by	default).

25

Traditional	Attack	Vectors

• Cache-based	side	channel
• Memory	safety
• Weak	mitigation	techniques	(e.g.,	ASLR)
• Uninitialized	padding	in	EDL

26

Memory	Safety	Issues

27

• SGX	is	not	free	from	memory	safety	issues
• Current	ecosystem	is	built	on	memory	unsafe	lang.

Attack

Defense

SEC’17
EuroSys’17

Return-oriented	Programming	(ROP)
void vuln(char *input)	{

char dst[0x100];

memcpy(dst,	input,	0x200);
}

ret

dst

Return-oriented	Programming	(ROP)
void vuln(char *input)	{

char dst[0x100];

memcpy(dst,	input,	0x200);
}

29

ret

dst

ret pop	rdi;	ret
arg1
ret

Return-oriented	Programming	(ROP)
void vuln(char *input)	{

char dst[0x100];

memcpy(dst,	input,	0x200);
}

30

ret

dst

ret pop	rdi;	ret
arg1
ret

ret

system(arg1)
arg1
ret

e.g.,	system(“/bin/sh”)

ROP	Inside	an	Enclave
void vuln(char *input)	{

char dst[0x100];

memcpy(dst,	input,	0x200);
}

31

Code	is	not	visible!
(e.g.,	loaded	in	an	encrypted	form)???

???

ROP	Inside	an	Enclave
void vuln(char *input)	{

char dst[0x100];

memcpy(dst,	input,	0x200);
}

32

dst

Code	is	not	visible!
(e.g.,	loaded	in	an	encrypted	form)

0x0000
0x0008

0x0100
0x0108

…

0x0110
0x0118

0x0000
0x0008

0x0100

0x0108

…

ret
0x0110
0x0118

???
???

???

ROP	in	Darkness:	Dark	ROP

• Step	1.	Debunking	the	locations	of	pop	gadgets
• Step	2.	Locating	ENCLU	+	pop	rax (i.e.,	EEXIT)
• Step	3.	Deciphering	all	pop	gadgets
• Step	4.	Locating	memcpy()

33

Step	1.	Looking	for	pop	Gadgets

34

0x0000
0x0008

0x0100
0x0108

…

ret
0x0110
0x0118

You	have	a	full	control	over	the	layout	
of	the	enclave

Step	1.	Looking	for	pop	Gadgets

35

0x0000
0x0008

0x0100
…

ret
0x0110
0x0118

0xff00
0xff01
0xff02

…

Rip	=	0xff00
(e.g.,	crash	illegal	instruction)

Step	1.	Looking	for	pop	Gadgets

36

0x0000
0x0008

0x0100
…

ret
0x0110
0x0118

0xff00
0xff01
0xff02

…

Rip	=	0xff00
(e.g.,	crash	illegal	instruction)

…

Rip	=	0x0118
(segfault)

0x0000
0x0008

0x0100
…

ret
0x0110
0x0118

pop	????
ret

0xff02

Step	1.	Looking	for	pop	Gadgets

37

0x0000
0x0008

0x0100
…

ret
0x0110
0x0118

0xff00
0xff01
0xff02

…

Rip	=	0xff00
(e.g.,	crash	illegal	instruction)

…

Rip	=	0x0118
(segfault)

0x0000
0x0008

0x0100
…

ret
0x0110
0x0118

pop	????
ret

0xff02

0x0000
0x0008

0x0100
…

ret
0x0110
0x0118

pop	????
pop	????
pop	????
ret

0x0120
0x0128

Rip	=	0x0128
(segfault)

0xff30

Step	1.	Looking	for	pop	Gadgets

38
Rip	=	0x0118
(segfault)

0x0000
0x0008

0x0100
…

ret
0x0110
0x0118

pop	????
ret

0xff02

0x0000
0x0008

0x0100
…

ret
0x0110
0x0118

pop	????
pop	????
pop	????
ret

0xff30

0x0120
0x0128

Rip	=	0x0128
(segfault)

0xff02	→	pop	?;ret
0xff30	→	pop	?;pop	?;pop	?;ret
…

Catalog	of	pop	gadgets
(unknown	args)

Step	2.	Looking	for	ENCLU

• ENCLU:	an	inst.	dispatches	to	various	leaf	functions
• rax =	0:	EREPORT
• rax =	1:	EGETKEY
• …
• rax =	4:	EEXIT

39

Step	2.	Looking	for	ENCLU

• ENCLU:	an	inst.	dispatches	to	various	leaf	functions
• rax =	0:	EREPORT
• rax =	1:	EGETKEY
• …
• rax =	4:	EEXIT

40

→	Scan	code	for	each	“pop????;ret”

→	If	gracefully	exit,	rip	=	ENCLU

0x0000
0x0008

0x0100
pop;ret

…

ret
0x0004
0x0118ret ENCLU

Step	3.	Deciphering	pop	Gadgets

• EEXIT	(ENCLU	&	rax=4)	left	a	register	file	uncleaned

41

→	Scan	code	for	all	pop	gadgets

→	check	arguments
0x0000
0x0008

0x0100
pop	arg1;	pop	arg2;	ret

…

ret
0x0001
0x0002

ret ENCLU

pop	rax;	retret
0x0004

Step	3.	Deciphering	pop	Gadgets

• EEXIT	(ENCLU	&	rax=4)	left	a	register	file	uncleaned

42

→	Scan	code	for	all	pop	gadgets

→	check	arguments
0x0000
0x0008

0x0100
pop	arg1;	pop	arg2;	ret

…

ret
0x0001
0x0002

ret ENCLU

pop	rax;	retret
0x0004

arg1	=	0x0001
arg2	=	0x0002

rax =	0x0004
rsi =	0x0001
rdi =	0x0002
…

Deciphering	
pop?	pop?	gadget

Register	file
+ pop	rsi

pop	rdi
ret

=

Step	4.	Looking	for	memcpy()

• Identifying	memcpy(dst*,	valid,	0x10)

43

pop	rdi;	pop	rsi;	pop	rdx;	retret
0xEE00

ret pop	rax;	ret

0x0010

ret ENCLU
0x0004

0xFF00

→	Check	if	“dst”	contains	0x10	data
(+	gracefully	exited)

ret Varying	(looking	for	memcpy)

Gadgets	Everywhere	(e.g.,	SDK)

DEMO:	PoC Dark	ROP

45

Defense:	SGXBounds

46

• Addressing	spatial memory problems	(bound	chk)

EuroSys’17

Defense:	SGXBounds

47

• Addressing	spatial memory problems	(bound	chk)
• Key	idea:	an	efficient	tag	representation	thanks	to	
smaller	memory	space!

Defense:	SGXBounds

48

Done	w/	Memory	Safety	on	SGX?

• SGXBounds is	a	temporary	solution:	no	temporal	
safety	(i.e.,	UAF)	and	SGX	likely	supports	more	
memory	in	the	future	(e.g.,	large	pages)

• Traditional	mitigations	help	(or	required)?

49

SGX	Mitigation	Checklist

• Popular	mitigation	schemes:
Stack	Canary
RELRO
DEP/NX
ASLR/PIE

50

SGX	Mitigation	Checklist

• Popular	mitigation	schemes:
Stack	Canary
RELRO
DEP/NX
ASLR/PIE

51

ecall_pointer_user_check():

prologue epillogue

SGX	Mitigation	Checklist

• Popular	mitigation	schemes:
Stack	Canary
RELRO
DEP/NX
ASLR/PIE

52

Defense:	ASLR/SW-DEP	inside	SGX

• Popular	mitigation	schemes:
Stack	Canary
RELRO
DEP/NX
ASLR/PIE

53NDSS’17

Challenges	for	Mitigation	Schemes	

It	is	non-trivial	when	an	attacker	is	the	kernel:

• Visible	memory	layout
• Small	randomization	entropy
• No	runtime	page	permission	change

54

SGX-Shield’s	Approach:	
In-enclave	Loading

Code	pages

Data	pages

Enclave

User	process

In-enclave
loader

Enclave	program

55

Stage	1

SGX-Shield’s	Approach:	
In-enclave	Loading

Code	pages

Data	pages

Enclave

User	process

In-enclave
loader

Enclave	program

Encrypted
enclave	program

56

Stage	1

SGX-Shield’s	Approach:	
In-enclave	Loading

Code	pages

Data	pages

Runtime	Data

User	process

SGX	related
data	structure

Code	pages

Data	pages

Enclave

User	process

Enclave

In-enclave
loader

Enclave	program

Encrypted
enclave	program

In-enclave
loading

57

Stage	1 Stage	2

SGX-Shield’s	Approach:	
In-enclave	Loading

Code	pages

Data	pages

Runtime	Data

User	process

SGX	related
data	structure

Code	pages

Data	pages

Enclave

User	process

Enclave

In-enclave
loader

Enclave	program

Encrypted
enclave	program

In-enclave
loading

58

Stage	1 Stage	2

Soft	DEP/SFI

DEMO:	SGX-Shield

59
https://github.com/sslab-gatech/SGX-Shield

Uninitialized	Padding	Problem

struct usbdevfs_connectinfo {	
unsigned	int devnum;	
unsigned	char	slow;	

};	

Uninitialized	Padding	Problem

struct usbdevfs_connectinfo {	
unsigned	int devnum;	
unsigned	char	slow;	

};	

struct usbdevfs_connectinfo {	
.devnum =	1,	
.slow	=	0,

};	

Uninitialized	Padding	Problem

struct usbdevfs_connectinfo {	
unsigned	int devnum;	
unsigned	char	slow;	

};	

????

devnum (4	bytes) slow	(1	byte)

struct usbdevfs_connectinfo {	
.devnum =	1,	
.slow	=	0,

};	

Uninitialized	Padding	Problem

????

devnum (4	bytes) slow	(1	byte)

struct usbdevfs_connectinfo {	
.devnum =	1,	
.slow	=	0,

};	

()

DEADBE

Uninitialized	Padding	Problem

CCS’16

Ecall/Ocall:	EDL	Interface	for	SGX

If	there	is	a	padding	issue	in	test_struct,	it	
leaks	(or	inject)	potentially	sensitive	data	
(e.g.,	a	private	key	like	HeartBleed)

65

//	Enclave.edl
untrusted	{

void e/ocall_test_struct(test_struct ts);
}

Ecall/Ocall:	EDL	Interface	for	SGX

66

//	Enclave.edl
untrusted	{

void e/ocall_test_struct(test_struct ts);
}

arXiv’17

DEMO:	SGX	Bleed	POC

67https://github.com/sslab-gatech/unisan

Using	Rust	SGX	SDK?

68

https://github.com/baidu/rust-sgx-sdk

Using	Rust	SGX	SDK?

69

• A	promising	direction	to	address	traditional	attack	
vectors
• But,	it	still	suffers	from	SGX-Bleed!

New	Attack	Vectors

• Page	table	attack
• Branch	shadowing	attack
• Rowhammer against	SGX

70

Page	Table	Attack
(controlled-channel	attack)
• Page	level	access	pattern	→	reveal	sensitive	info.
(e.g.,	page	faults,	page	access	bits,	…)

71

SP’15

Sec’17

DEMO:	Page	Fault	Attack

72

Defense:	T-SGX

73
NDSS’17

• Using	Intel	Transactional	Synchronization	Extension	
(TSX)	to	isolate	page	faults	inside	SGX

Key	Idea:	TSX	Isolates	Faults!

• Unexpected	side-effects	(see,	DrK [CCS’16])
• Any	faults	→ invokes	an	abort	handler

74

Design	of	T-SGX	(Compiler)

75

T-SGX:	Eradicating	Page	Faults

• Technique	to	avoid	false aborts	(e.g.,	capacity)
• Security	analysis	→	springboard	design
• Performance	optimizations	

76

T-SGX:	Eradicating	Page	Faults

• Technique	to	avoid	false aborts	(e.g.,	capacity)
• Security	analysis	→	springboard	design
• Performance	optimizations	

77

0

0.5

1

1.5

2

2.5

T-SGX

50%	CPU,	30%	Mem	overheads

DEMO:	T-SGX

78https://github.com/sslab-gatech/t-sgx

New	Attack	Vectors

• Page	table	attack
• Branch	shadowing	attack
• Rowhammer against	SGX

79

New	Side	Channel:	
Branch	Shadowing	Attack
• Finer-grained,	yet	noise-free!
(unlike	page	faults	/	cache	attacks,	respectively)

• Observation:
• Branch	history	is	shared between	SGX	and	non-SGX

→	Execution	history	of	an	enclave	affects	the	
performance	of	non-SGX	execution

80

New	Side	Channel:	
Branch	Shadowing	Attack
• Finer-grained,	yet	noise-free!
(unlike	page	faults	/	cache	attacks,	respectively)

81

SEC’17

Idea:	Exploiting	New	HW	Features

• Intel	Skylake (and	Broadwell)	introduced	two	new	
debugging	features	that	report	prediction	results

• Last	Branch	Record	(LBR)
• Intel	Processor	Trace	(PT)

→	But	only	for	non-enclave programs	
(or	enclave	on	a	debug	mode)	

82

Our	Approach:	Branch	Shadowing

83

enclave

non-enclave

Shadow	replica

Our	Approach:	Branch	Shadowing

• are	mapped	onto	the	
same	branch	prediction	buffer		
• is	a	shadow	copy	of	an	
enclave	program	forced	to	take	
all	branches	(e.g.,	je →	jmp)

84

je 0x0010	
enclave

non-enclave

jmp 0xFF10	

BTB/BPU

store

affect

Our	Approach:	Branch	Shadowing

• are	mapped	onto	the	
same	branch	prediction	buffer		
• is	a	shadow	copy	of	an	
enclave	program	forced	to	take	
all	branches	(e.g.,	je →	jmp)
• Monitor								with	LBR/PT	and	
extract	branch	prediction	
results	indirectly																

85

je 0x0010	
enclave

non-enclave

jmp 0xFF10	

BTB/BPU

store

affect

Intel	PT/LBR

Branch	Prediction	101

…
cmp $0, rax
je L1
inc rbx
…

L1:dec rbx

Predict	the	next	instr.	of	a	branch	instr.	to	avoid	
pipeline	stalls

Which	one	would	be	the	next	instr.
to	be	predicted?

86

Branch	Prediction	101

…
cmp $0, rax
je L1
inc rbx
…

L1:dec rbx

Predict	the	next	instr.	of	a	branch	instr.	to	avoid	
pipeline	stalls

Make	this	prediction	if	
1) there	is	no	history	or
2) the	branch	has	not	been	taken

87

Branch	Prediction	101

…
cmp $0, rax
je L1
inc rbx
…

L1:dec rbx

Predict	the	next	instr.	of	a	branch	instr.	to	avoid	
pipeline	stalls

Make	this	prediction	if	
the	branch	has	been	taken

Conditional	behavior →	Reveal	history
How	can	we	know	which	branch	was	taken?

88

Branch	Prediction	vs.	Misprediction

• Measure	branch	execution	time
• Take	longer if	a	branch	is	incorrectly predicted
(e.g.,	roll	back,	clear	pipeline,	jump	to	the	correct	target)

89

Prediction Misprediction
mean stdev mean stdev

RDTSCP 94.21 13.10 120.61 806.56
PT	CYC 59.59 14.44 90.64 191.48
LBR	cycle 25.69 9.72 35.04 10.52

→	Observable	difference	but	high	measurement	noise

Exploiting	New	HW	Features

• Intel LBR/PT	explicitly	report	the	prediction	result,	
but	only	taken branches	(w/	limited	buf size)

• Approach:
• Translating	all	cond.	to	be	taken	in	the	shadow	copy
• Synchronization	b/w	enclave	and	its	shadow

90

Example:	Inferring	Cond.	Branch

cmp $0, rax
0x00530: je 0x005f4
0x00532: inc rbx

…
0x005f4: dec rbx

Enclave

91

Example:	Inferring	Cond.	Branch

cmp $0, rax
0x00530: je 0x005f4
0x00532: inc rbx

…
0x005f4: dec rbx

Enclave

• Prepare	a	shadow	copy	w/
• Colliding	conditional	branches

cmp rax, rax
0xff530: je 0xff5f4
0xff532: nop

…
0xff5f4: nop

Shadow	copy
aligned

92

Example:	Inferring	Cond.	Branch

cmp $0, rax
0x00530: je 0x005f4
0x00532: inc rbx

…
0x005f4: dec rbx

Enclave

• Prepare	a	shadow	copy	w/
• Colliding	conditional	branches
• Always	to	be	taken	(to	be	monitored	by	LBR)

cmp rax, rax
0xff530: je 0xff5f4
0xff532: nop

…
0xff5f4: nop

Shadow	copy
aligned

93

Example:	Inferring	Cond.	Branch

cmp $0, rax
0x00530: je 0x005f4
0x00532: inc rbx

…
0x005f4: dec rbx

Enclave

OR

BPU/BTB

taken

0x**530 not	taken

0x**530

94

Example:	Inferring	Cond.	Branch

cmp $0, rax
0x00530: je 0x005f4
0x00532: inc rbx

…
0x005f4: dec rbx

Enclave

LBR

OR

BPU/BTB

taken

0x**530 not	taken

0x**530

Indexed/tagged	by	
lower	31	bits

95

Example:	Inferring	Taken	Branch

cmp rax, rax
0xff530: je 0xff5f4
0xff532: nop

…
0xff5f4: nop

Shadow	code
BPU/BTB

0x**530 taken

LBR

96

Example:	Inferring	Taken	Branch

• BPU/BTB	correctly	predicts the	execution	of	the	
shadow	branch	using	the	history

cmp rax, rax
0xff530: je 0xff5f4
0xff532: nop

…
0xff5f4: nop

Shadow	code
BPU/BTB

0x**530 taken

LBR
Correct!

97

Example:	Inferring	Taken	Branch

• If	LBR	reports:
• Predicted	→	The	target	branch	has	been	taken

cmp rax, rax
0xff530: je 0xff5f4
0xff532: nop

…
0xff5f4: nop

Shadow	code
BPU/BTB

0x**530 taken

LBR
0xff530 0xff5f4 Predicted

Correct!

98

Example:	Inferring	Not-taken Branch

• If	LBR	reports:
• Predicted	→	The	target	branch	has	been	taken
• Mispredicted→	The	target	branch	has	NOT	been	taken

cmp rax, rax
0xff530: je 0xff5f4
0xff532: nop

…
0xff5f4: nop

Shadow	code
BPU/BTB

0x**530 not	taken

LBR
0xff530 0xff5f4 Mispredicted

Wrong!

99

Enabling	Single	Stepping!

• Check	branch	state	as	frequently	as	possible	to	
overcome	the	capacity	limit	of	BPU/BTB	and	LBR
• e.g.,	BTB:	4,096	entries,	LBR:	32	entries	(Skylake)

• Increase	timer	interrupt	frequency
• Adjust	the	TSC	value	of	the	local	APIC	timer

• Disable	the	CPU	cache
• CD	bit	of	the	CR0	register

~50	cycles

~5	cycles

100

Example:	Attacking	RSA	Exp.
/* X = A^E mod N */
mbedtls_mpi_exp_mod(X, A, E, N, _RR) {
…
while (1) {
…
// i-th bit of exponent
ei = (E->p[nblimbs] >> bufsize) & 1;

if (ei == 0 && state == 0)
continue;

if (ei == 0 && state == 1)
mpi_montmul(X, X, N, mm, &T);

…
}
…

}

Sliding-window	
exponentiation	of	mbedTLS

101

Example:	Attacking	RSA	Exp.
/* X = A^E mod N */
mbedtls_mpi_exp_mod(X, A, E, N, _RR) {
…
while (1) {
…
// i-th bit of exponent
ei = (E->p[nblimbs] >> bufsize) & 1;

if (ei == 0 && state == 0)
continue;

if (ei == 0 && state == 1)
mpi_montmul(X, X, N, mm, &T);

…
}
…

}

Taken	only	when	ei is	zero

Sliding-window	
exponentiation	of	mbedTLS

102

Example:	Attacking	RSA	Exp.
/* X = A^E mod N */
mbedtls_mpi_exp_mod(X, A, E, N, _RR) {
…
while (1) {
…
// i-th bit of exponent
ei = (E->p[nblimbs] >> bufsize) & 1;

if (ei == 0 && state == 0)
continue;

if (ei == 0 && state == 1)
mpi_montmul(X, X, N, mm, &T);

…
}
…

}

Taken	only	when	ei is	zero

Sliding-window	
exponentiation	of	mbedTLS

103

• The	probability	that	the	two	branches	return	
different	results:	0.34 (error	rates)
• The	inference	accuracy	of	the	remaining	bits:	0.998
• We	were	able	to	recover	66%	of	an	RSA	private	
key	bit	from	a	single	run.
• ≤10	runs	are	enough	to	fully	recover	the	key.

DEMO:	Branch	Shadowing	Attack

104

What	Else?
Program/Function Description Leakages
libc/strtol Convert	a	string	

into	an	integer
The sign	and	length	of	an	
input
Hexadecimal	digits

libc/vfprintf Print	a	formatted
string

The	input	format	string

LIBSVM/k_function Evaluate	a	kernel	
function

The	type	of a	kernel	(e.g.,	
linear,	RBF)
The	number	of	features

Apache/lookup_bui
ltin_method

Parse	the	method	
of	an	HTTP	
request

HTTP	request	method	(e.g.,	
GET,	POST)

105

Defense:	Flushing	Branch	States
(Hardware)
• Clear	branch	states	during	enclave	mode	switches

106

Defense:	Flushing	Branch	States
(Hardware)
• Clear	branch	states	during	enclave	mode	switches
• How	much	overheads	(depending	on	frequency)?
• Simulation:	Flushing	per	>10k	cycles	incurs
negligible	overheads

0

0.2

0.4

0.6

0.8

1

1.2

bzip2
gcc

mcf
gobmk

hmmer

sjeng
libquantum

h264ref

omnetpp

astar
xalancbmk

bwaves

gamess

milc
zeusmp

gromacs

cactusADM

leslie3d

namd
dealII

soplex
povray

calculix

GemsFDTD

tonto
lbm wrf

sphinx3

GMEAN

N
or

m
al

iz
ed

In
st

ru
ct

io
ns

pe
r

cy
cl

e

SPEC Benchmark
no flushes

flush per 100 cycles
flush per 1k cycles

flush per 10k cycles
flush per 100k cycles

flush per 1M cycles
flush per 10M cycles

Fig. 12: Instructions per cycle of SPEC benchmark in terms of frequency of BTB + BPU flushing.

0

20

40

60

80

100

n/a 100 1k 10k 100k 1M 10M

N
or

m
al

iz
ed

B
TB

H
it/

M
is

s
R

at
e

Flushing Frequency (cycles)
Avg BTB Hit Rate Avg BTB Miss Rate

Fig. 13: Average BTB hit/miss rate for SPEC06 w.r.t. frequency of
BTB + BPU flushing.

0

20

40

60

80

100

n/a 100 1k 10k 100k 1M 10M

N
or

m
al

iz
ed

B
TB

St
at

s

Flushing Frequency (cycles)
Avg BP_ON_PATH_CORRECT

Avg BP_ON_PATH_MISPREDICT
Avg BP_ON_PATH_MISFETCH

Fig. 14: Average BTB stats for SPEC06 w.r.t. frequency of BTB +
BPU flushing.

Parameter Value

CPU 4 GHz out of order core, 4 issue width, 256 entry ROB
L1 cache 8 way 32 KB I-cache + 8 way 32 KB D-cache
L2 cache 8 way 128 KB
L3 cache 32 way 8 MB
BTB 4 way 1,024 sets
BPU gshare, branch history length 16

TABLE III: MacSim Simulation parameters

parameters. From our experiments, we found that the BTB is
organized as a 4-way set associative structure with a total of
4,096 entries. We model a simple branch predictor, gshare [38],
for the simulation. Current Intel processors use more advanced
predictors, but the specifics are not very important for these
experiments. We use 200 million instruction long traces from
the SPEC06 benchmark suite for simulation and flush the BTB

and BPU periodically at varying frequencies.
Figure 12 shows the normalized instructions per cycle (IPC)

for different flush frequencies. We found that if the flush
frequency is higher than 100K cycles, it has a negligible impact
on the performance. At a flush frequency of 100K cycles,
the performance impact is lower than 2% and at 1 million
cycles, it is negligible. Figure 13 shows the BTB hit rate,
whereas Figure 14 shows the BPU correct, incorrect (direction
prediction is wrong), and misfetch (target prediction is wrong)
percentages. The BTB and BPU statistics are also virtually
indistinguishable beyond a flush frequency of 100K cycles.

In a 4GHz CPU, if we assume that the interval between
interrupts (or AEX) is 100K cycles, there would be 10,000
interrupts per second. According to our measurements, about
250 and 1,000 timer interrupts are generated per second in
Linux (version 4.4) and Windows 10, respectively. Thus, if
there is no I/O device generating too many interrupts, the flush
frequency of 100K cycles would be reasonable.

B. Software-based Countermeasure
The hardware-based countermeasure can effectively prevent

the branch shadowing attack, but we cannot be sure when and
whether such hardware changes can be realized. Especially,
if such changes cannot be done with micro code updates,
Intel CPUs already deployed in the markets would have no
countermeasure against the branch shadowing attack.

Possible software-based countermeasures against the branch
shadowing attack are to remove branches [40] or to use the
state-of-the-art ORAM technique, Raccoon [46]. Ohrimenko et
al. [40]’s data-oblivious machine learning algorithms try to
eliminate all branches by using a conditional move instruction,
CMOV. However, their approach is algorithm-specific, i.e., we
cannot apply it to general applications. Raccoon [46] always
executes both paths of a conditional branch, such that it
can hide whether the branch has been really taken from a
branch shadowing attack. But, its performance overhead is
high (21.8⇥).
Zigzagger. We propose a practical, compiler-based mitigation
scheme against the branch shadowing attack, called Zigzagger.
The basic idea of Zigzagger is to obfuscate a set of branch
instructions into a single indirect jump. However, it is not

13

107

Defense:	Obfuscating	Branch	
(Software/Compiler)
• Set	of	conditional/indirect	branches	→	
a	single	indirect	branch	+	conditional	move	instructions
• The	final	indirect	branch	has	a	lot	of	targets	such	that	it	
is	difficult	to	infer	its	state.

cmp $0, $a
je block2
<code1>
jmp block5
cmp $0, $b
je block4
<code2>
jmp block5
<code3>
<code4>

if (a != 0) {
 <code1>
}
else if (b != 0) {
 <code2>
}
else {
 <code3>
}
 <code4>

block3:

block1:

block2:

block5:

block0:

block4:

(a) An example code snippet. It selectively executes a branch block
according to a and b variables.

(b) The protected code snippet by Zigzagger. All branch instructions
are executed regardless of a and b variables. An indirect branch in
the trampoline and CMOV instructions in the translated code are used
to obfuscate the final target address. Note that r15 is reserved in
Zigzagger to store the target address.

Fig. 15: Securing an example code snippet with Zigzagger.

straightforward to compute the target block of each branch
without relying on conditional jumps because conditional
expressions would become very complex when we need to
handle nested branches. In Zigzagger, we solved this problem
by utilizing a CMOV instruction, which performs a conditional
MOV operation, and introducing a sequence of non-conditional
jump instructions in lieu of each branch. Zigzagger’s approach
has several benefits: 1) in terms of security, it provides a
first line of protection on each branch blocks and explodes
the potential flows in an enclave program; 2) in terms of
performance, the unconditional jumps are much more favorable
to instruction pipelining; 3) in terms of practicality, Zigzagger’s
transformation does not require complex analysis of code
semantics (i.e., possible to implement it as a compiler pass).
Furthermore, Zigzagger’s execution pattern—back-and-forth
jumps between the converted branch set and the Zigzagger’s
trampoline—practically increases the bar for de-obfuscating
the fine-grained control-flow of the protected enclave problem.
It is worth noting that this countermeasure is not specific to
Intel SGX nor the branch shadowing attack proposed in this
paper; we can use this approach to mitigate other types of
branch-based timing attacks.

Figure 15 shows how Zigzagger transforms an example
code snippet having if, else-if, and else blocks. It converts
all conditional and unconditional branches into unconditional
branches targeting Zigzagger’s trampoline that jumps back-
and-forth with the converted branches and finally jumps
into the real target address in a reserved register r15 stored
before jumping into the Zigzagger. It reserves the register

Benchmark Baseline Zigzagger
(iter/s) #Branches (overhead)

2 3 4 5 All

numeric sort 967.25 1.05⇥ 1.11⇥ 1.12⇥ 1.13⇥ 1.15⇥
string sort 682.31 1.08⇥ 1.15⇥ 1.18⇥ 1.15⇥ 1.27⇥
bitfield 4.5E+08 1.03⇥ 1.10⇥ 1.14⇥ 1.18⇥ 1.31⇥
fp emulation 96.204 1.10⇥ 1.21⇥ 1.15⇥ 1.27⇥ 1.35⇥
fourier 54982 0.99⇥ 0.99⇥ 1.01⇥ 1.01⇥ 1.01⇥
assignment 35.73 1.36⇥ 1.56⇥ 1.50⇥ 1.55⇥ 1.90⇥
idea 10,378 2.16⇥ 2.16⇥ 2.18⇥ 2.19⇥ 2.19⇥
huffman 2478.1 1.59⇥ 1.46⇥ 1.61⇥ 1.63⇥ 1.81⇥
neural net 16.554 0.75⇥ 0.77⇥ 0.85⇥ 0.86⇥ 0.89⇥
lu decomposition 1,130 1.04⇥ 1.09⇥ 1.08⇥ 1.11⇥ 1.17⇥

GEOMEAN 1.17⇥ 1.22⇥ 1.24⇥ 1.26⇥ 1.34⇥

TABLE IV: Overhead of the Zigzagger approach according to the
number of branches belonging to each Zigzagger

for performance reasons; for programs that can utilize more
registers, it can potentially use the main memory instead, but
reserving r15 in SGX has negligible performance overhead [51].
To emulate conditional execution without using conditional
jump, we use CMOV instructions: e.g., the CMOV instructions in
Figure 15b update r15 only when a or b is zero. Otherwise,
these instructions are treated as NOP instructions. Since all of
the unconditional branches are executed almost simultaneously
in sequence, an attacker has difficulty recognizing the current
instruction pointer; our APIC timer trick is not fine-grained
enough to distinguish each branches in practice (§III-F). At
last, the indirect branch in Zigzagger’s trampoline now has five
different target addresses, obfuscating potential target addresses.

Implementation. We implemented Zigzagger in LLVM 4.0
as an LLVM pass that converts branches in each function and
constructs the required trampoline. We also modified the LLVM
backend to reserve the r15 register. We observed that when
a function has many branches, making them share a single
trampoline in Zigzagger introduces non-negligible performance
overhead due to frequent jumps. To avoid this problem, our
implementation provides a knob to configure the number of
branches that each trampoline manages and randomly assigns
branches to each trampoline. Note that such merging-based
optimization trades the security for performance, but we believe
it becomes more useful in practice (e.g., selectively applying
to security-sensitive routines).

Our proof-of-concept implementation of Zigzagger, which
provides full protection, imposes 1.34⇥ performance overheads,
when evaluating it with the nbench benchmark suite (Table IV).
With optimization (i.e., merging 3 branches into a single
trampoline), the average overhead becomes less than 1.22⇥.
Note that reserving a register in our microbenchmark results
in 4%–50% performance improvement.

VI. DISCUSSION

In this section, we explain some limitations of the branch
shadowing attack and discuss possible advanced attacks.

14

(a) An example code snippet. It selectively executes a branch block
according to a and b variables.

mov $block1, r15
cmp $0, $a
cmov $block2, r15
jmp zz1
<code1>
mov $block5, r15
jmp zz2
mov $block3, r15
cmp $0, $b
cmov $block4, r15
jmp zz3
<code2>
mov $block5, r15
jmp zz4
<code3>
<code4>

block0:

block0.j:

block1.j:

block1:

block2.j:

block2:

block3.j:

block3:

block5:
block4:

Zigzagger's trampoline

zz1:jmp block1.j

zz2:jmp block2.j

zz3: jmp block3.j

zz4: jmpq *r15

(b) The protected code snippet by Zigzagger. All branch instructions
are executed regardless of a and b variables. An indirect branch in
the trampoline and CMOV instructions in the translated code are used
to obfuscate the final target address. Note that r15 is reserved in
Zigzagger to store the target address.

Fig. 15: Securing an example code snippet with Zigzagger.

straightforward to compute the target block of each branch
without relying on conditional jumps because conditional
expressions would become very complex when we need to
handle nested branches. In Zigzagger, we solved this problem
by utilizing a CMOV instruction, which performs a conditional
MOV operation, and introducing a sequence of non-conditional
jump instructions in lieu of each branch. Zigzagger’s approach
has several benefits: 1) in terms of security, it provides a
first line of protection on each branch blocks and explodes
the potential flows in an enclave program; 2) in terms of
performance, the unconditional jumps are much more favorable
to instruction pipelining; 3) in terms of practicality, Zigzagger’s
transformation does not require complex analysis of code
semantics (i.e., possible to implement it as a compiler pass).
Furthermore, Zigzagger’s execution pattern—back-and-forth
jumps between the converted branch set and the Zigzagger’s
trampoline—practically increases the bar for de-obfuscating
the fine-grained control-flow of the protected enclave problem.
It is worth noting that this countermeasure is not specific to
Intel SGX nor the branch shadowing attack proposed in this
paper; we can use this approach to mitigate other types of
branch-based timing attacks.

Figure 15 shows how Zigzagger transforms an example
code snippet having if, else-if, and else blocks. It converts
all conditional and unconditional branches into unconditional
branches targeting Zigzagger’s trampoline that jumps back-
and-forth with the converted branches and finally jumps
into the real target address in a reserved register r15 stored
before jumping into the Zigzagger. It reserves the register

Benchmark Baseline Zigzagger
(iter/s) #Branches (overhead)

2 3 4 5 All

numeric sort 967.25 1.05⇥ 1.11⇥ 1.12⇥ 1.13⇥ 1.15⇥
string sort 682.31 1.08⇥ 1.15⇥ 1.18⇥ 1.15⇥ 1.27⇥
bitfield 4.5E+08 1.03⇥ 1.10⇥ 1.14⇥ 1.18⇥ 1.31⇥
fp emulation 96.204 1.10⇥ 1.21⇥ 1.15⇥ 1.27⇥ 1.35⇥
fourier 54982 0.99⇥ 0.99⇥ 1.01⇥ 1.01⇥ 1.01⇥
assignment 35.73 1.36⇥ 1.56⇥ 1.50⇥ 1.55⇥ 1.90⇥
idea 10,378 2.16⇥ 2.16⇥ 2.18⇥ 2.19⇥ 2.19⇥
huffman 2478.1 1.59⇥ 1.46⇥ 1.61⇥ 1.63⇥ 1.81⇥
neural net 16.554 0.75⇥ 0.77⇥ 0.85⇥ 0.86⇥ 0.89⇥
lu decomposition 1,130 1.04⇥ 1.09⇥ 1.08⇥ 1.11⇥ 1.17⇥

GEOMEAN 1.17⇥ 1.22⇥ 1.24⇥ 1.26⇥ 1.34⇥

TABLE IV: Overhead of the Zigzagger approach according to the
number of branches belonging to each Zigzagger

for performance reasons; for programs that can utilize more
registers, it can potentially use the main memory instead, but
reserving r15 in SGX has negligible performance overhead [51].
To emulate conditional execution without using conditional
jump, we use CMOV instructions: e.g., the CMOV instructions in
Figure 15b update r15 only when a or b is zero. Otherwise,
these instructions are treated as NOP instructions. Since all of
the unconditional branches are executed almost simultaneously
in sequence, an attacker has difficulty recognizing the current
instruction pointer; our APIC timer trick is not fine-grained
enough to distinguish each branches in practice (§III-F). At
last, the indirect branch in Zigzagger’s trampoline now has five
different target addresses, obfuscating potential target addresses.

Implementation. We implemented Zigzagger in LLVM 4.0
as an LLVM pass that converts branches in each function and
constructs the required trampoline. We also modified the LLVM
backend to reserve the r15 register. We observed that when
a function has many branches, making them share a single
trampoline in Zigzagger introduces non-negligible performance
overhead due to frequent jumps. To avoid this problem, our
implementation provides a knob to configure the number of
branches that each trampoline manages and randomly assigns
branches to each trampoline. Note that such merging-based
optimization trades the security for performance, but we believe
it becomes more useful in practice (e.g., selectively applying
to security-sensitive routines).

Our proof-of-concept implementation of Zigzagger, which
provides full protection, imposes 1.34⇥ performance overheads,
when evaluating it with the nbench benchmark suite (Table IV).
With optimization (i.e., merging 3 branches into a single
trampoline), the average overhead becomes less than 1.22⇥.
Note that reserving a register in our microbenchmark results
in 4%–50% performance improvement.

VI. DISCUSSION

In this section, we explain some limitations of the branch
shadowing attack and discuss possible advanced attacks.

14

108

Defense:	Obfuscating	Branch	
(Software/Compiler)
• LLVM-based	implementation
• Overhead	(nbench):	≤1.5✕
• Just	mitigate	the	attack,	don’t	solve	it	completely

109

New	Attack	Vectors

• Page	table	attack
• Branch	shadowing	attack
• Rowhammer against	SGX

110

SGX-Bomb:	Rowhammer Attack

• Integrity	violation	of	EPC	results	in	CPU	lockdown
• Rowhammer (SW)	can	trigger	the	violation!

Core $

MEE Root

DRAM

EPC	– Int Tree

EPC	– Enclaves

SGX-Bomb:	Rowhammer Attack

• Integrity	violation	of	EPC	results	in	CPU	lockdown
• Rowhammer (SW)	can	trigger	the	violation!

SysTEX’17

About	Integrity	Violation

• SGX	assumes	HW/physical	attackers
• Integrity	violation	→	drop-and-lock	policy

• Implications:
• DoS:	Freezing	an	entire	machine	(cloud	provider)
• Require	power	recycle	(not	via	normal	methods)

113

SGX-Bomb	Remarks

• Easier	to	trigger	than	normal	rowhammer
i.e.,	a	single,	arbitrary	bit	in	EPC	region	(128MB)

• Harder	to	detect
• Not	notifiable	in	terms	of	resource	usages
• Popular	defenses	(e.g.,	in	Linux)	rely	on	PMU	(e.g.,	cache	
misses)	that	is	not	possible	for	enclaves

114

DEMO:	SGX-Bomb

115

Defenses	against	SGX-Bomb

• Use	LPDDR3	compliant	to	Intel’s	Pseudo-TRR	
(Target	Row	Refresh)
• ECC	can’t	completely	block	(easy	to	trigger	multiple	bits)

• Potential	defenses:
• Using	Uncore PMU
• Row-aware	memory	allocation	for	EPC	regions

116

Summary

• Intel	SGX	is	a	practical,	promising	building	block	to	
write	a	secure	program
• Intel	SGX	has	unusually	strong	threat	model,	
opening	up	unexpected	attacks

• Today’s	Talk:	Recent	Attack/Defense	of	Intel	SGX

117

Summary

• It’s	not	future	technology;	it’s	already	everywhere!

https://software.intel.com/en-us/sgx/academic-research

Backup

Local	APIC	Timer

• OS	can	program	the	timer	interrupt	(belonging	to	
the	local	APIC).
• Recent	Linux	kernel	uses	the	TSC-deadline	mode.
• Schedule	the	next	timer	interrupt	with	the	time	stamp	
counter	(TSC)	value

tsc = rdtsc();
wrmsrl(MSR_IA32_TSC_DEADLINE,
tsc + (((u64) delta) * TSC_DIVISOR));

120

Modified	Local	APIC	Timer
1 /* linux-4.4.23/arch/x86/kernel/apic/apic.c */
2 ...
3 // manipualte the delta of TSC-deadline mode
4 unsigned int lapic_next_deadline_delta = 0U;
5 EXPORT_SYMBOL_GPL(lapic_next_deadline_delta);
6

7 // specify the virtual core under attack
8 int lapic_target_cpu = -1;
9 EXPORT_SYMBOL_GPL(lapic_target_cpu);

10

11 // a hook to launch branch shadowing attack
12 void (*timer_interrupt_hook)(void*) = NULL;
13 EXPORT_SYMBOL_GPL(timer_interrupt_hook);
14 ...
15 // update the next TSC deadline
16 static int lapic_next_deadline(unsigned long delta,
17 struct clock_event_device *evt) {
18 u64 tsc;
19

20 tsc = rdtsc();
21 if (smp_processor_id() != lapic_target_cpu) {
22 wrmsrl(MSR_IA32_TSC_DEADLINE,
23 tsc + (((u64) delta) * TSC_DIVISOR)); // original
24 }
25 else {
26 wrmsrl(MSR_IA32_TSC_DEADLINE,
27 tsc + lapic_next_deadline_delta); // custom deadline
28 }
29 return 0;
30 }
31 ...
32 // handle a timer interrupt
33 static void local_apic_timer_interrupt(void) {
34 int cpu = smp_processor_id();
35 struct clock_event_device *evt = &per_cpu(lapic_events, cpu);
36

37 if (cpu == lapic_target_cpu && timer_interrupt_hook) {
38 timer_interrupt_hook((void*)&cpu); // call attack code
39 }
40 ...
41 }

Fig. 5: Modified local APIC timer code of Linux kernel 4.4.23. We
changed lapic_next_deadline() to manipulate the next TSC deadline
and local_apic_timer_interrupt() to launch the branch shadowing
attack. We wrote a kernel module to change the exported global
variables and function.

2.75)1. This implies that, by using this frequent timer, we can
apply the branch shadowing attack to a victim enclave process
every 50th instructions.
Disabling cache. If we want to attack a very short loop
having branches (i.e., shorter than 50 instructions), the frequent
timer interrupt would not be enough. To interrupt an enclave
process more frequently, we selectively disable the L1 and L2
cache of a CPU core running the victim enclave process, by
setting the cache disable (CD) bit of the CR0 control register
through a kernel module. With the frequent timer interrupt
and disabled cache, about 4.71 ADD instructions were executed
between two timer interrupts on average (standard deviation:
1.96 with 10,000 iterations). This would be enough to attack
most branches. One limitation of cache disabling is that it
significantly slows the execution of a victim enclave process
such that the process may notice it is under an attack. Therefore,
an attacker needs to carefully disable the cache only for certain
cases (e.g., when he or she recognizes a victim enclave process
is executing a function containing a very short loop).

1The number of iterations was 10,000. We disabled Hyper-Threading,
SpeedStep, TurboBoost, and C-States to reduce noise.

1 /* isgx_ioctl.c */
2 ...
3 static long isgx_ioctl_enclave_create(struct file *filep,
4 unsigned int cmd, unsigned long arg) {
5 ...
6 struct isgx_create_param *createp =
7 (struct isgx_create_param *) arg;
8 void *secs_la = createp->secs;
9 struct isgx_secs *secs = NULL;

10 // SGX Enclave Control Structure (SECS)
11 long ret;
12 ...
13 secs = kzalloc(sizeof(*secs), GFP_KERNEL);
14 ret = copy_from_user((void *)secs, secs_la, sizeof (*secs));
15 ...
16 ? secs->base = vm_mmap(file, MANIPULATED_BASE_ADDR, secs->size,
17 ? PROT_READ | PROT_WRITE | PROT_EXEC,
18 ? MAP_SHARED, 0);
19 ...
20 }

Fig. 6: Modified Intel SGX driver to manipulate the base address of
an enclave

G. Virtual Address Manipulation

To perform the branch shadowing attack, an attacker has
to manipulate the virtual addresses of a victim enclave
process. Since the attacker has already compromised an OS,
manipulating the page table to change virtual addresses is an
easy task. For simplicity, we assume the attacker disables the
user-space ASLR and modifies the Intel SGX driver for Linux
(vm_mmap) to change the base address of an enclave, as shown
in Figure 6. Also, the attacker puts an arbitrary number of NOP
instructions before the shadow code to satisfy the alignment.

H. Attack Synchronization

Although the branch shadowing attack probes multiple
branches in each iteration, it is insufficient when a victim
enclave program is large. An approach to overcome this
limitation is to apply the branch shadowing attack in a function
level. Namely, an attacker first infers functions a victim enclave
program either has executed or is currently executing and then
probes branches belonging to the functions. If those functions
contain entry points that can be invoked from outside (via
the EENTER instruction) or rely on external calls, the attacker
can correctly identify them because they are controllable and
observable by the OS. However, the attacker needs another
strategy to infer the execution of non-exported functions.

To find such executed functions, an attacker can create special
shadow code consisting of always reachable branches of target
functions (e.g., a conditional or unconditional branch located
at the prologue). By periodically executing the special shadow
code, the attacker can know which function has been executed
and will run certain shadow code for the function.

Also, we can use the page-fault side channel [62] to
synchronize attacks in terms of pages. Since this channel allows
an attacker to know a code page that is about to be executed,
he or she only needs to check functions located in the code
page. But, this approach would not work when a victim enclave
process is secured with recent studies [10, 51, 52] that prevent
page-fault side channels.

9

1 /* linux-4.4.23/arch/x86/kernel/apic/apic.c */
2 ...
3 // manipualte the delta of TSC-deadline mode
4 unsigned int lapic_next_deadline_delta = 0U;
5 EXPORT_SYMBOL_GPL(lapic_next_deadline_delta);
6

7 // specify the virtual core under attack
8 int lapic_target_cpu = -1;
9 EXPORT_SYMBOL_GPL(lapic_target_cpu);

10

11 // a hook to launch branch shadowing attack
12 void (*timer_interrupt_hook)(void*) = NULL;
13 EXPORT_SYMBOL_GPL(timer_interrupt_hook);
14 ...
15 // update the next TSC deadline
16 static int lapic_next_deadline(unsigned long delta,
17 struct clock_event_device *evt) {
18 u64 tsc;
19

20 tsc = rdtsc();
21 if (smp_processor_id() != lapic_target_cpu) {
22 wrmsrl(MSR_IA32_TSC_DEADLINE,
23 tsc + (((u64) delta) * TSC_DIVISOR)); // original
24 }
25 else {
26 wrmsrl(MSR_IA32_TSC_DEADLINE,
27 tsc + lapic_next_deadline_delta); // custom deadline
28 }
29 return 0;
30 }
31 ...
32 // handle a timer interrupt
33 static void local_apic_timer_interrupt(void) {
34 int cpu = smp_processor_id();
35 struct clock_event_device *evt = &per_cpu(lapic_events, cpu);
36

37 if (cpu == lapic_target_cpu && timer_interrupt_hook) {
38 timer_interrupt_hook((void*)&cpu); // call attack code
39 }
40 ...
41 }

Fig. 5: Modified local APIC timer code of Linux kernel 4.4.23. We
changed lapic_next_deadline() to manipulate the next TSC deadline
and local_apic_timer_interrupt() to launch the branch shadowing
attack. We wrote a kernel module to change the exported global
variables and function.

2.75)1. This implies that, by using this frequent timer, we can
apply the branch shadowing attack to a victim enclave process
every 50th instructions.
Disabling cache. If we want to attack a very short loop
having branches (i.e., shorter than 50 instructions), the frequent
timer interrupt would not be enough. To interrupt an enclave
process more frequently, we selectively disable the L1 and L2
cache of a CPU core running the victim enclave process, by
setting the cache disable (CD) bit of the CR0 control register
through a kernel module. With the frequent timer interrupt
and disabled cache, about 4.71 ADD instructions were executed
between two timer interrupts on average (standard deviation:
1.96 with 10,000 iterations). This would be enough to attack
most branches. One limitation of cache disabling is that it
significantly slows the execution of a victim enclave process
such that the process may notice it is under an attack. Therefore,
an attacker needs to carefully disable the cache only for certain
cases (e.g., when he or she recognizes a victim enclave process
is executing a function containing a very short loop).

1The number of iterations was 10,000. We disabled Hyper-Threading,
SpeedStep, TurboBoost, and C-States to reduce noise.

1 /* isgx_ioctl.c */
2 ...
3 static long isgx_ioctl_enclave_create(struct file *filep,
4 unsigned int cmd, unsigned long arg) {
5 ...
6 struct isgx_create_param *createp =
7 (struct isgx_create_param *) arg;
8 void *secs_la = createp->secs;
9 struct isgx_secs *secs = NULL;

10 // SGX Enclave Control Structure (SECS)
11 long ret;
12 ...
13 secs = kzalloc(sizeof(*secs), GFP_KERNEL);
14 ret = copy_from_user((void *)secs, secs_la, sizeof (*secs));
15 ...
16 ? secs->base = vm_mmap(file, MANIPULATED_BASE_ADDR, secs->size,
17 ? PROT_READ | PROT_WRITE | PROT_EXEC,
18 ? MAP_SHARED, 0);
19 ...
20 }

Fig. 6: Modified Intel SGX driver to manipulate the base address of
an enclave

G. Virtual Address Manipulation

To perform the branch shadowing attack, an attacker has
to manipulate the virtual addresses of a victim enclave
process. Since the attacker has already compromised an OS,
manipulating the page table to change virtual addresses is an
easy task. For simplicity, we assume the attacker disables the
user-space ASLR and modifies the Intel SGX driver for Linux
(vm_mmap) to change the base address of an enclave, as shown
in Figure 6. Also, the attacker puts an arbitrary number of NOP
instructions before the shadow code to satisfy the alignment.

H. Attack Synchronization

Although the branch shadowing attack probes multiple
branches in each iteration, it is insufficient when a victim
enclave program is large. An approach to overcome this
limitation is to apply the branch shadowing attack in a function
level. Namely, an attacker first infers functions a victim enclave
program either has executed or is currently executing and then
probes branches belonging to the functions. If those functions
contain entry points that can be invoked from outside (via
the EENTER instruction) or rely on external calls, the attacker
can correctly identify them because they are controllable and
observable by the OS. However, the attacker needs another
strategy to infer the execution of non-exported functions.

To find such executed functions, an attacker can create special
shadow code consisting of always reachable branches of target
functions (e.g., a conditional or unconditional branch located
at the prologue). By periodically executing the special shadow
code, the attacker can know which function has been executed
and will run certain shadow code for the function.

Also, we can use the page-fault side channel [62] to
synchronize attacks in terms of pages. Since this channel allows
an attacker to know a code page that is about to be executed,
he or she only needs to check functions located in the code
page. But, this approach would not work when a victim enclave
process is secured with recent studies [10, 51, 52] that prevent
page-fault side channels.

9

• Exported	hooks	to	perform	attacks
• delta=1000	was	the	minimum	value

we	could	use	(i7-6700K).
• About	50	ADD	instructions were

executed	between	two	timer	interrupts.

121

Last	Branch	Record

• Record	the	information	of	recently	taken branch	
instructions	(Skylake:	up	to	32)
• Branch	instruction	address	(from)
• Target	address	(to)
• Prediction	result	(success/failure)
• Elapsed	core	cycles	between	LBR	entry	updates

• Selectively	record	branch	information
• Branch	type:	conditional/indirect,	function	call/return
• Space:	User	and/or	kernel

122

program is large. An approach to overcome this limitation
is to apply the branch shadowing attack at the function
level. Namely, an attacker first infers functions a vic-
tim enclave program either has executed or is currently
executing and then probes branches belonging to these
functions. If these functions contain entry points that can
be invoked from outside (via EENTER) or that rely on ex-
ternal calls, the attacker can easily identify them because
they are controllable and observable by the OS.

However, the attacker needs another strategy to infer
the execution of non-exported functions. The attacker can
create special shadow code consisting of always reachable
branches of target functions (e.g., branches located at the
function prologue). By periodically executing this code,
the attacker can see which of the monitored functions has
been executed. Also, the attacker can use the page-fault
side channel [58] to synchronize attacks in terms of pages.

3.9 Victim Isolation
To minimize noise, we need to ensure that only a victim
enclave program and shadow code will be executed in an
isolated physical core. Each physical core has the BTB
and BPU shared by multiple processes. Thus, if another
process runs in the core under the branch shadowing at-
tack, its execution would affect the overall attack results.
To avoid this problem, we use the isolcpus boot parame-
ter to specify an isolated core that will not be scheduled
without certain requests. Then, we use the taskset com-
mand to run a victim enclave with the isolated core.

4 Evaluation

In this section, we demonstrate the branch shadowing
attack against an implementation of RSA and also de-
scribe our case studies of various libraries and applica-
tions which are vulnerable to our attack but mostly secure
against the controlled-channel attack [58].

4.1 Attacking RSA Exponentiation
We launch the branch shadowing attack against a popular
TLS library, called mbed TLS (also known as PolarSSL).
mbed TLS is a popular choice of SGX developers and
researchers because of its lightweight implementation and
portability [46, 48, 60, 61].

Figure 5 shows how mbed TLS implements sliding-
window exponentiation, used by RSA operations. This
function has two conditional branches (jne) marked with
? whose executions depend on each bit (ei) of an expo-
nent. These branches will be taken only when ei is not
zero (i.e., one). Thus, by shadowing them and checking
their states, we can know the value of ei. Note that the
two branches are always executed no matter how large

1 /* Sliding-window exponentiation: X = A^E mod N */
2 int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
3 const mbedtls_mpi *E, const mbedtls_mpi *N,
4 mbedtls_mpi *_RR) {
5 ...
6 state = 0;
7 while (1) {
8 ...
9 // i-th bit of exponent

10 ei = (E->p[nblimbs] >> bufsize) & 1;
11

12 // cmpq 0x0,-0xc68(%rbp); jne 3f317; ...
13 ? if (ei == 0 && state == 0)
14 continue;
15

16 // cmpq 0x0,-0xc68(%rbp); jne 3f371; ...
17 ? if (ei == 0 && state == 1)
18 + mpi_montmul(X, X, N, mm, &T);
19

20 state = 2; nbits++;
21 wbits |= (ei << (wsize-nbits));
22

23 if (nbits == wsize) {
24 for (i = 0; i < wsize; i++)
25 + mpi_montmul(X, X, N, mm, &T);
26

27 + mpi_montmul(X, &W[wbits], N, mm, &T);
28 state--; nbits = wbits = 0;
29 }
30 }
31 ...
32 }

Figure 5: Sliding-window exponentiation of mbed TLS. Branch
shadowing can infer every bit of the secret exponent.

the sliding window is. In our system, each loop execution
(Lines 7–30) took about 800 cycles such that a manipu-
lated local APIC timer was enough to interrupt it. Also,
to differentiate each loop execution, we shadow uncondi-
tional branches that jump back to the loop’s beginning.

We evaluated the accuracy of branch shadowing by
attacking RSA-1024 decryption with the default key pair
provided by mbed TLS for testing. By default, mbed
TLS’s RSA implementation uses the Chinese Remainder
Theorem (CRT) technique to speed up computation. Thus,
we observed two executions of mbedtls_mpi_exp_mod
with two different 512-bit CRT exponents in each iter-
ation. The sliding-window size was five.

On average, the branch shadowing attack recovered
approximately 66% of the bits of each of the two CRT
exponents from a single run of the victim (averaged over
1,000 executions). The remaining bits (34%) correspond
to loop iterations in which the two shadowed branches
returned different results (i.e., predicted versus mispre-
dicted). We discarded those measurements, as they were
impacted by platform noise, and marked the correspond-
ing bits as unknown. The remaining 66% of the bits were
inferred correctly with an accuracy of 99.8%, where the
standard deviation was 0.003.

The events that cause the attack to miss about 34% of
the key bits appear to occur at random times. Different
runs reveal different subsets of the key bits. After at
most ten runs of the victim, the attack recovers virtually

9

123

Page-fault	Attack?
/* X = A^E mod N */
mbedtls_mpi_exp_mod(X, A, E, N, _RR) {
…
while (1) {
…
// i-th bit of exponent
ei = (E->p[nblimbs] >> bufsize) & 1;

if (ei == 0 && state == 0)
continue;

if (ei == 0 && state == 1)
mpi_montmul(X, X, N, mm, &T);

…
if (nbits == wsize) {
for (i = 0; i < wsize; ++i)
mpi_montmul(X, X, N, mm, &T);

mpi_montmul(X, &W[wbits], N, mm, &T);
…

}
}
…

}

124

Differentiate	these	
two	function	calls

scan each bit

...

1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 ...

call mpi_montmul six times (page faults)
1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 ...

call mpi_montmul once
1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 ...

call mpi_montmul once
1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 ...

call mpi_montmul six times : leaked bits

Figure 6: Controlled-channel attack against sliding-window
exponentiation (window size: 5). It only knows the first bit of
each window (always one) and skipped bits (always zero).

the entire key. This number of runs is small in compare
to existing cache-timing attacks, which demand several
hundreds to several tens of thousands runs to reliably
recover keys [19, 32, 63].

Timing-based branch shadowing. Instead of using
the LBR, we measured how long it takes to execute the
shadow branches using RDTSCP while maintaining other
techniques, including the modified local APIC timer and
victim isolation. When the two target branches were taken,
the shadow branches took 55.51 cycles on average, where
the standard deviation was 48.21 cycles (1,000 iterations).
When the two target branches were not taken, the shadow
branches took 93.89 cycles on average, where the standard
deviation was 188.49 cycles. Because of high variance,
finding a good decision boundary was challenging, so we
built a support vector machine classifier using LIBSVM
(with an RBF kernel and default parameters). Its accuracy
was 0.947 (10-fold cross validation)—i.e., we need to run
this attack at least two times more than the LBR-based
attack to achieve the same level of accuracy.

Controlled-channel attack. We also evaluated the con-
trolled channel attack against Figure 5. We found that
mbedtls_mpi_exp_mod conditionally called mpi_montmul
(marked with +) according to the value of ei and both
functions were located on different code pages. Thus, by
carefully unmapping these pages, an attacker can monitor
when mpi_montmul is called. However, as Figure 6 shows,
because of the sliding-window technique, the controlled-
channel attack cannot identify every bit unless it knows
W[wbits]—i.e., this attack can only know the first bit
of each window (always one) and skipped bits (always
zero). The number of recognizable bits completely de-
pends on how bits of an exponent are distributed. Against
the default RSA-1024 private key of mbed TLS, this at-
tack identified 334 bits (32.6%). Thus, we conclude that
the branch shadowing attack is better than the controlled
channel attack for obtaining fine-grained information.

4.2 Case Study
We also studied other sensitive applications that branch
shadowing can attack. Specifically, we focused on ex-
amples in which the controlled-channel attack cannot
extract any information, e.g., control flows within a sin-
gle page. We attacked three more applications: 1) two
libc functions (strtol and vfprintf) in the Linux SGX
SDK, 2) LibSVM, ported to Intel SGX, and 3) some
Apache modules ported to Intel SGX. We achieved in-
teresting results, such as how long an input number
is (strtol), what the input format string looks like
(vfprintf), and what kind of HTTP request an Apache
server gets (lookup_builtin_method), as summarized in
Table 2. Note that the controlled-channel attack cannot
obtain the same information because those functions do
not call outside functions at least in the target basic blocks.
Detailed analysis with source code is in Appendix C.

5 Countermeasures

We introduce our hardware-based and software-based
countermeasures against the branch shadowing attack.

5.1 Flushing Branch State
A fundamental countermeasure against the branch shad-
owing attack is flushing all branch states generated inside
an enclave. Whenever an enclave context switch (via the
EENTER, EEXIT, or ERESUME instructions or AEX) occurs,
the processor needs to flush the BTB and BPU states.
Since the BTB and BPU benefit from local and global
branch execution history, there would be a performance
penalty if these states were flushed too frequently.

We evaluate the performance overhead of our counter-
measure at different flushing frequencies in a cycle level
out-of-order microarchitecture simulator, MacSim [28].
The details of our simulation parameters are listed in Ta-
ble 3. The BTB is modeled after the BTB in Intel Skylake
processors. We used a method similar to [1, 56] to reverse
engineer the BTB parameters. From our experiments, we
found that the BTB is organized as a 4-way set associa-
tive structure with a total of 4,096 entries. We model a
simple branch predictor, gshare [35], for the simulation.
We use traces that are 200 million instructions long from
the SPEC06 benchmark suite for simulation.

Figure 7 shows the normalized instructions per cycle
(IPC) for different flush frequencies. We found that if
the flush frequency is higher than 100k cycles, it has
negligible performance overhead. At a flush frequency of
100k cycles, the performance degradation is lower than
2% and at 1 million cycles, it is negligible. Figure 8
shows the BTB hit rate, whereas Figure 9 shows the BPU
correct, incorrect (direction prediction is wrong), and

10

Recognizable	bit	fraction:	(1+window	size)/2
(~30%	if	window	size	is	five)

Inferring	Indirect	Branch

0x00530: jmpq *rdx
0x00532: inc rbx

…
0x005f4: dec rbx

Enclave

• Infer	whether	a	target	indirect	branch	in	an	enclave	
has	been	executed

125

Inferring	Indirect	Branch

0x00530: jmpq *rdx
0x00532: inc rbx

…
0x005f4: dec rbx

Enclave

• Infer	whether	a	target	indirect	branch	in	an	enclave	
has	been	executed
• Prepare	shadow	code	for	a	target	branch
• Colliding	indirect	branch
• Jump	to	the	next	instruction

• The	execution	of	the	shadow	branch	is	affected	by	
the	target	branch.

mov 0xff532, rdx
0xff530: jmpq *rdx
0xff532: nop

…
0xff5f4: nop

Shadow	code
aligned

126

Inferring	Indirect	Branch

0x00530: jmpq *rdx
0x00532: inc rbx

…
0x005f4: dec rbx

Enclave

LBR

• BPU/BTB	is	updated	according	to	the	execution	of	
the	target	branch.
• LBR	ignores	branch	execution	inside	an	enclave.

BPU/BTB

0x005f4

0x**530 n/a

0x**530
OR

127

Inferring	Indirect	Branch	(Executed)

• BPU/BTB	mispredicts the	execution	of	the	shadow	
branch.
• LBR	reports	the	corresponding	branch	information.
• Mispredicted→ The	target	branch	has	been	executed.

mov 0xff532, rdx
0xff530: jmpq *rdx
0xff532: nop

…
0xff5f4: nop

Shadow	code
BPU/BTB

0x**530 0x005f4

LBR
0xff530 Mispredicted0xff532

Wrong!

128

Inferring	Indirect	Branch	(Not	Executed)

• BPU/BTB	correctly	predicts the	execution	of	the	
shadow	branch.
• LBR	reports	the	corresponding	branch	information.
• Predicted→ The	target	branch	has	not	been	executed.

mov 0xff532, rdx
0xff530: jmpq *rdx
0xff532: nop

…
0xff5f4: nop

Shadow	code

LBR
0xff530 Predicted0xff532

Correct!

BPU/BTB
n/a0x**530

129

